Deep_Learning学习笔记2|优化模型
Deep_Learning学习笔记2
极简手写数字识别模型
基础模型:神经网络
- 套用房价预测的模型
- 输入:由28*28改为784/每个像素值
- 输出:1,预测的数据值
以类的方式组建网络
- 初始化函数:定义每层的函数
- Forward函数:层之间的串联方式
1 | # 定义mnist数据识别网络结构,同房价预测网络 |
input_dim设置为784,即输入为784
output_dim为1,即网络层数为1
act为None,即不使用激活函数
在init()中申明网络结构,在forward()函数中把这些结构串联,
训练过程
代码几乎与房价预测任务一致
包含四个部分:
- 生成模型实例,设为“训练”状态
- 配置优化器,SGD Optimizer
- 两层循环的训练过程
- 保存模型参数,便于后续使用
仅在向模型灌入数据的代码不同
- 先转变成np.array格式
- 再转换成框架内置格式 to variable
1 | # 通过with语句创建一个dygraph运行的context |
每训练1000批次打印的Loss数据如下:
可以看出训练的效果并不好
- Loss的值并没有在1以下,甚至有的还超过3
- 从epoch0到epoch9,Loss值总体上下降趋势并不明显
测试效果
1 | # 测试效果 |
预测的结果如下图所示:
显然是不准确的
优化版手写数字识别模型
网络模型
多层感知机
代码如下:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18# 定义多层全连接神经网络
class MNIST(paddle.nn.Layer):
def __init__(self):
super(MNIST, self).__init__()
# 定义两层全连接隐含层,输出维度是10,当前设定隐含节点数为10,可根据任务调整
self.fc1 = Linear(in_features=784, out_features=10)
self.fc2 = Linear(in_features=10, out_features=10)
# 定义一层全连接输出层,输出维度是1
self.fc3 = Linear(in_features=10, out_features=1)
# 定义网络的前向计算,隐含层激活函数为sigmoid,输出层不使用激活函数
def forward(self, inputs):
# inputs = paddle.reshape(inputs, [inputs.shape[0], 784])
outputs1 = self.fc1(inputs)
outputs1 = F.sigmoid(outputs1)
outputs2 = self.fc2(outputs1)
outputs2 = F.sigmoid(outputs2)
outputs_final = self.fc3(outputs2)
return outputs_final- 输入层的尺度为28×28,但批次计算的时候会统一加1个维度(大小为batch size)。
- 中间的两个隐含层为10×10的结构,激活函数使用常见的Sigmoid函数。
- 与房价预测模型一样,模型的输出是回归一个数字,输出层的尺寸设置成1。
训练效果
卷积神经网络
代码如下
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26# 多层卷积神经网络实现
class MNIST(paddle.nn.Layer):
def __init__(self):
super(MNIST, self).__init__()
# 定义卷积层,输出特征通道out_channels设置为20,卷积核的大小kernel_size为5,卷积步长stride=1,padding=2
self.conv1 = Conv2D(in_channels=1, out_channels=20, kernel_size=5, stride=1, padding=2)
# 定义池化层,池化核的大小kernel_size为2,池化步长为2
self.max_pool1 = MaxPool2D(kernel_size=2, stride=2)
# 定义卷积层,输出特征通道out_channels设置为20,卷积核的大小kernel_size为5,卷积步长stride=1,padding=2
self.conv2 = Conv2D(in_channels=20, out_channels=20, kernel_size=5, stride=1, padding=2)
# 定义池化层,池化核的大小kernel_size为2,池化步长为2
self.max_pool2 = MaxPool2D(kernel_size=2, stride=2)
# 定义一层全连接层,输出维度是1
self.fc = Linear(input_dim=980, output_dim=1)
# 定义网络前向计算过程,卷积后紧接着使用池化层,最后使用全连接层计算最终输出
# 卷积层激活函数使用Relu,全连接层不使用激活函数
def forward(self, inputs):
x = self.conv1(inputs)
x = F.relu(x)
x = self.max_pool1(x)
x = self.conv2(x)
x = F.relu(x)
x = self.max_pool2(x)
x = paddle.reshape(x, [x.shape[0], -1])
x = self.fc(x)
return x训练结果如下
比较经典全连接神经网络和卷积神经网络的损失变化,可以发现卷积神经网络的损失值下降更快,且最终的损失值更小。
损失函数
均方误差
上述卷积神经网络的模型的损失函数用的即为均方误差。
交叉熵——sigmoid()
修改计算损失的函数:
- 从:
loss = paddle.nn.functional.square_error_cost(predict, label)
- 到:
loss = paddle.nn.functional.cross_entropy(predict, label)
训练结果如下:
优化算法
在深度学习神经网络模型中,通常使用标准的随机梯度下降算法更新参数,学习率代表参数更新幅度的大小,即步长。当学习率最优时,模型的有效容量最大,最终能达到的效果最好。学习率和深度学习任务类型有关,合适的学习率往往需要大量的实验和调参经验。探索学习率最优值时需要注意如下两点:
- 学习率不是越小越好。学习率越小,损失函数的变化速度越慢,意味着我们需要花费更长的时间进行收敛,如 图2 左图所示。
- 学习率不是越大越好。只根据总样本集中的一个批次计算梯度,抽样误差会导致计算出的梯度不是全局最优的方向,且存在波动。在接近最优解时,过大的学习率会导致参数在最优解附近震荡,损失难以收敛,如 图2 右图所示。
设置学习率
在训练前,我们往往不清楚一个特定问题设置成怎样的学习率是合理的,因此在训练时可以尝试调小或调大,通过观察Loss下降的情况判断合理的学习率,设置学习率的代码如下所示。
1 | #设置不同初始学习率 |
学习率的主流优化算法
学习率是优化器的一个参数,调整学习率看似是一件非常麻烦的事情,需要不断的调整步长,观察训练时间和Loss的变化。经过研究员的不断的实验,当前已经形成了四种比较成熟的优化算法:SGD、Momentum、AdaGrad和Adam,效果如下图所示。
- SGD: 随机梯度下降算法,每次训练少量数据,抽样偏差导致的参数收敛过程中震荡。
- Momentum: 引入物理“动量”的概念,累积速度,减少震荡,使参数更新的方向更稳定。
每个批次的数据含有抽样误差,导致梯度更新的方向波动较大。如果我们引入物理动量的概念,给梯度下降的过程加入一定的“惯性”累积,就可以减少更新路径上的震荡,即每次更新的梯度由“历史多次梯度的累积方向”和“当次梯度”加权相加得到。历史多次梯度的累积方向往往是从全局视角更正确的方向,这与“惯性”的物理概念很像,也是为何其起名为“Momentum”的原因。类似不同品牌和材质的篮球有一定的重量差别,街头篮球队中的投手(擅长中远距离投篮)喜欢稍重篮球的比例较高。一个很重要的原因是,重的篮球惯性大,更不容易受到手势的小幅变形或风吹的影响。
- AdaGrad: 根据不同参数距离最优解的远近,动态调整学习率。学习率逐渐下降,依据各参数变化大小调整学习率。
通过调整学习率的实验可以发现:当某个参数的现值距离最优解较远时(表现为梯度的绝对值较大),我们期望参数更新的步长大一些,以便更快收敛到最优解。当某个参数的现值距离最优解较近时(表现为梯度的绝对值较小),我们期望参数的更新步长小一些,以便更精细的逼近最优解。类似于打高尔夫球,专业运动员第一杆开球时,通常会大力打一个远球,让球尽量落在洞口附近。当第二杆面对离洞口较近的球时,他会更轻柔而细致的推杆,避免将球打飞。与此类似,参数更新的步长应该随着优化过程逐渐减少,减少的程度与当前梯度的大小有关。根据这个思想编写的优化算法称为“AdaGrad”,Ada是Adaptive的缩写,表示“适应环境而变化”的意思。RMSProp是在AdaGrad基础上的改进,学习率随着梯度变化而适应,解决AdaGrad学习率急剧下降的问题。
- Adam: 由于动量和自适应学习率两个优化思路是正交的,因此可以将两个思路结合起来,这就是当前广泛应用的算法。
利用不同的优化算法训练模型
1 | #四种优化算法的设置方案,可以逐一尝试效果 |
超参数
在深度学习中,超参数有很多,比如学习率α、使用momentum或Adam优化算法的参数(β1,β2,ε)、层数layers、不同层隐藏单元数hidden units、学习率衰退、mini=batch的大小等。